张恒
副研究员
专业:控制科学与工程
所属科研团队:装备智能健康评估
研究方向:装备故障预测与健康管理,剩余寿命预测,电池管理系统
Email: hengscu@163.com
地址:四川省成都市一环路南一段24号88038威尼斯基础教学楼B座217
学习和工作简历
教育经历:
2016/09-2021/06,88038威尼斯空天科学与工程学院,机械工程,博士,导师:苗强教授
2012/09-2016/06,哈尔滨工程大学航天与建筑工程学院,质量与可靠性工程,学士
访学经历:
2019/12-2020/11,University of South Carolina,美国,联合培养博士,导师:Bin Zhang 教授
工作经历:
2021/06-至今,88038威尼斯,88038威尼斯,副研究员(专职科研)
2021/09-2023/06,88038威尼斯,88038威尼斯,助理研究员
科研项目:
[1] 国家自然科学基金,基于Lebesgue采样的动力电池组状态联合估计与寿命预测研究,主持
[2] 四川省科技厅,飞行器机载电传作动系统健康状态在线评估与预测研究,主持
[3] 博士后基金,资源受限的空间锂离子蓄电池组在轨健康管理关键技术研究,主持
[4] 国家重点研发计划项目,大规模制造产业网状结构价值链数字生态理论研究,主研
[5] 国家自然科学基金,微重力环境下低速空间旋转机构动态服役行为表征与评估,主研
代表性学术成果:
[1] Lyu G, Zhang H, Miao Q. Parallel State Fusion LSTM-based Early-cycle Stage Lithium-ion Battery RUL Prediction Under Lebesgue Sampling Framework. Reliability Engineering & System Safety, 2023, 236: 109315.
[2] Lyu G, Zhang H, Miao Q. RUL Prediction of Lithium-Ion Battery in Early-Cycle Stage Based on Similar Sample Fusion Under Lebesgue Sampling Framework. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-11.
[3] Miao J, Deng C, Zhang H, et al. Interactive channel attention for rotating component fault detection with strong noise and limited data. Applied Soft Computing, 2023, 138: 110171.
[4] Lyu G, Zhang H, Zhang Y J, et al. An interpretable remaining useful life prediction scheme of lithium-ion battery considering capacity regeneration. Microelectronics Reliability, 2022: 114625.
[5] Wang J, Zeng Z, Zhang H, et al. An Hybrid Domain Adaptation Diagnostic Network Guided by Curriculum Pseudo Labels for Electro-mechanical Actuator. Reliability Engineering & System Safety, 2022: 108770.
[6] Yan X, H. Zhang, Luo C, et al. Degree of Cyclic Target Protrusion Defined on Squared Envelope Spectrum for Rotating Machinery Fault Diagnosis. Measurement, 2021: 110634.
[7] H. Zhang, G.X. Niu, B. Zhang, and Q. Miao, “Cost-Effective Lebesgue Sampling Long Short-Term Memory Networks for Lithium-Ion Batteries Diagnosis and Prognosis,” IEEE Transactions on Industrial Electronics, 2022, Vol.69, No.2, pp.1958-1967.
[8] H. Zhang, E. Liu, B. Zhang, and Q. Miao, “RUL prediction and uncertainty management for multisensor system using an integrated data-level fusion and UPF approach,” IEEE Transactions on Industrial Informatics, vol. 17, no. 7, pp. 4692 - 4701, 2021.
[9] H. Zhang, Z. Mo, J. Wang, and Q. Miao, “Nonlinear-drifted fractional Brownian motion with multiple hidden state variables for remaining useful life prediction of lithium-ion batteries,” IEEE Transactions on Reliability, vol. 69, no. 2, pp. 768–780, 2019.
[10] H. Zhang, Miao Q, Zhang X, and Liu ZW, “An improved unscented particle filter approach for lithium-ion battery remaining useful life prediction,” Microelectronics Reliability, 2018, 81: 288-298.
[11] Z.L. Mo, H. Zhang, J.L. Wang, J.Y. Wang, H.Y. Fu, and Q. Miao, “Adaptive Meyer wavelet filters for machinery fault diagnosis based on harmonic infinite-taxicab norm and grasshopper optimization algorithm,” Proceedings of the iMeche, Part C: Journal of Mechanical Engineering Science, 2021, Vol.235, No.19, pp.4458-4474.
[12] Z.L. Mo, J.Y. Wang, H. Zhang, and Q. Miao, “Weighted cyclic harmonic-to-noise ratio for rolling element bearing fault diagnosis,” IEEE Transactions on Instrumentation and Measurement, 2020, Vol.69, No.2, pp.432-442.
[13] J.Y. Wang, Z.L. Mo, H. Zhang, and Q. Miao, “Ensemble diagnosis method based on transfer learning and incremental learning towards mechanical big data,” Measurement, 2020, Vol. 155, 107517.
[14] 苗强, 蒋京, 张恒, 罗冲. 工业大数据背景下的航空智能发动机:机遇与挑战, 仪器仪表学报, 2019, Vol.40, No.7, pp. 1-12.
人才培养:
研究生选修课程:《检测技术与自动化》、《可靠性系统工程》、《运筹学》
学术兼职:
航空学会PHM分会青年委员,IEEE会员,担任IEEE Transactions on Power Systems,IEEE Transactions on Industrial Informatics,IEEE Transactions on Industrial Electronics,IEEE Transactions on Instrumentation and Measurement等多个期刊审稿人。